Is Your Data AI-Ready? A 5-Step Strategy to Prepare Your Dataの翻訳版です。
2025年3月12日
Ryan Treichler
HCL Unica プロダクトマネジメント ディレクター
AI(人工知能)はもはやSFのようなの未来的なテクノロジーではありません。 すでに私たちのビジネスに深く根付き、業界構造を変革し、業務プロセスを自動化し、かつてない規模でビジネスモデルそのものを再定義しています。 しかし、その水面下では、依然として以下のような誤解が存在していることをご存知でしょうか?
多くの企業がAIの活用を急いでいますが、正しく活用するためにも「そのデータはAI対応になっているのか?」という根本的な課題に立ち返る必要があります。
ある調査では、企業の約80%が自社データはAI対応済みと認識していますが、実際には52%が導入時にデータの品質や分類に重大な課題を抱えています。
強固なデータ基盤がなければ、どれほど高性能なAIモデルであっても誤った予測やコンプライアンスリスク、業務効率の低下を招くおそれがあります。
AIの認識された準備状況と実際の有効性との間のこの矛盾は、AIの実装を成功させるために解消されなければなりません。
事実、AIはその土台となる「データの質」によって、その真価が決まります。
では、どのようにすれば「AIに最適化されたデータ基盤」を整備できるのでしょうか?ここでは、AI導入に向けて取り組むべき5つのステップをご紹介します。
AI導入の過程で企業が遭遇する最大の課題の1つが、AIモデルが頻繁に期待通りのパフォーマンスを発揮しない、または不正確な結果を出すことです。
その根本的な原因の多くは「データ品質」にあります。
たとえば、社内データが断片的だったり、一貫性がなく更新されていなかったりすると、AIの予測精度は大きく低下します。
予測精度の低下を避けるという意味で、データ品質ガードレールが重要な役割を果たします。
ちなみに、ガードレールとは「人工知能(AI)、分析、意思決定システムなどの重要なアプリケーションで使用される前に、データが正確で一貫性があり、信頼できることを保証するため」に設計された、事前に定義されたルールと確認ツールです。
これらは、低品質のデータがビジネスのAI主導のプロセスを損なうのを避けるための防御施策と考えてください。
データの正確性とは、データが現実世界の事象や対象をどれだけ正確に表現しているかを指します。
正確性を確保するための実践例として、
顧客行動を予測するAIモデルを構築しようとしても、購買履歴や属性情報などの重要なデータが欠落していては、結果に偏りが生じる可能性があります。
マーケティング領域においては、こうした不完全なデータがAIの精度や有効性を大きく損なう要因となります。
また、定期的なデータ監査も完全性の維持に必要不可欠である
データの一貫性とは、複数のシステムおよびデータセットにおいて、データが整合性を保ち、統一された形式で存在している状態を指します。
AIシステムは、構造化され標準化されたデータに基づいて傾向を予測します。そのため、部門ごとに異なる形式(例:「USA」と「United States」など)でデータが管理されていると、AIモデルはパターンを正しく認識できず、矛盾した洞察を生み出す可能性があります。
データの一貫性を確保するには、以下のような戦略とベストプラクティスが有効です。
企業は、AIパイプラインにデータを取り込む前に、リアルタイムでのデータ検証を行う必要があります。これは、異常値や重複、矛盾のあるレコードを事前に検知・排除するプロセスです。
自動化されたデータ検証チェック機能を実装することで、AIモデルは高品質で信頼できるデータのみで学習されることが保証されます。
AIによってビジネスインパクトを最大化するためには、組織はAI導入の前後を問わず、すべての段階でこうしたデータ品質のガードレールを継続的に監視・強化していくことが不可欠次に取り上げるのは、AI向けデータ準備におけるもう一つの重要な要素、「データラベリングとセマンティックレイヤリング」です。
「AIがデータの「意味」を正しく理解できていますか?文脈を持たないAIは、単なる自動化に過ぎません。文脈を持つAIこそが「知性」です。」
AIモデルが膨大な顧客データへアクセスできたとしても、それを「理解」できていなければ、的確なビジネス判断を導くことはできません。
どれほど高性能なAIでも、データに正確なラベルが付与されておらず、構造的にも意味づけが不十分であれば、有用な洞察を生み出すことは困難です。
この課題を解決する鍵が、「データラベリング」と「セマンティックレイヤー」です。両者は連携して、AIにとって意味のある形にデータを分類・構造化・文脈化し、ビジネス活用可能なデータへと導きます。
セマンティックレイヤーは、部門間で異なる用語や定義を標準化し、AIが異なるデータセットでも一貫した意味で情報を解釈できるようにします。
たとえば、ある金融機関において「Q1」と「Quarter1」という表現が同一の意味を持つよう、AIが混乱なく理解できるようになることで、誤解を防ぎ、意思決定の精度を高めることができます。
ただし、いかに高品質で文脈に即したデータを用意しても、それがAIシステムからアクセス可能でなければ意味がありません。
次は、「AIにとってアクセス可能なデータ」を実現するためのベストプラクティスについて掘り下げていきます。
AIの賢さは、「アクセスできるデータの質と量」に比例します。では、そのデータが部門ごとにサイロ化され、断片的に存在していたらどうなるでしょうか?
多くの企業では、いまだに異なるシステムやチャネルに分散したデータソースの統合に課題を抱えており、その結果、AIによる分析に遅延や非効率が生じ、顧客エンゲージメントやマーケティング施策の精度を十分に引き出せていないのが実情です。
AIがリアルタイムの洞察や完全な顧客プロファイリングを実現するには、すべてのデータソースがシームレスに統合されている必要があります。
そこで重要な役割を果たすのが Composable CDP(Customer Data Platform) です。これは、複数チャネルに点在する構造化・非構造化データを統合し、「唯一の信頼できる情報源」として、AI活用に適した完全かつ詳細な顧客プロファイルの構築を可能にします。
Composable CDPはモジュール型の設計で、既存のデータシステムと柔軟に連携可能です。
これにより、AIは顧客の全チャネルにまたがる行動データを一元的に分析できるようになり、より精度の高いマーケティング戦略が実現します。
複数の接点から収集されたデータを統合・照合することで、顧客の詳細な全体像が明らかになります。
これにより、AIは「次に起こすべきアクション(Next Best Action)」を予測し、超個別化されたエクスペリエンスを提供できるようになります。さらに、部門を超えた戦略的意思決定も支援します。
Composable CDPは、AIが完全で構造化された実用的なデータにアクセスできるようにし、即時活用可能なデータ基盤を整備できます。
これにより、自動化・パーソナライズ・予測分析の精度を最大限に高め、よりスマートな顧客エンゲージメントを実現可能です。
ただし、AIが活用できる状態にあるデータを単に「アクセス可能」にするだけでは不十分です。
そのデータが常に準拠性を保ち、将来的なAI活用にも耐えられるよう、保存・管理の在り方も同時に検討する必要があります。
次章では、この「準拠性の維持」と「AI導入を成功させるためのデータガバナンス」について詳しく見ていきましょう。
顧客の65%が「個人データの不適切な取り扱い」をブランド不信の主要因と挙げている現在、データの安全な取り扱いと責任ある管理は、企業にとって最重要課題となっています。
AIシステムは膨大な量の機密情報を処理するため、企業はGDPR(EU一般データ保護規則)、CCPA(カリフォルニア州消費者プライバシー法)、そして新たに制定されたEU AI法(AI Act)などの法規制への準拠は、単なる罰則回避にとどまらず、企業の信頼性を担保しAIの倫理的な活用を保証する上で不可欠です。
また、顧客との長期的な関係構築することにも繋がります。
以下は、マーケティング領域においてAI活用を進めながら、規制への準拠と高品質なデータ管理を両立させるための主要な方法です。
このように、データのセキュリティと管理を徹底することで、企業はAIがプライバシーに配慮した高品質なデータを活用できる状態を維持できます。
ただし、コンプライアンス対応は「保護」だけでは不十分で、データライフサイクル全体における完全なトレーサビリティ(追跡可能性)が求められます。
次章ではデータ・リネージ(データの由来と流れを明らかにする仕組み)が、説明責任と透明性をどう実現するかに焦点を当てて解説していきます。
「たとえば、AIによる価格決定エンジンが、高額購入者に対して大幅な値引きを提示し、利益率が大幅に低下することを想像してみましょう。
または、AI駆動型のリードスコアリングシステムが、忠実な高価値顧客を「優先度が低い」と誤判定し、営業チームが機会を逸したとしたらどうしますか?」
これらは単なる「システムエラー」ではなく、AIの意思決定がどのデータに基づいて導き出されたのかを説明できない、データの透明性の欠如がもたらした深刻な課題です。
収益機会の損失、広告費の浪費、そして顧客信頼の低下といったビジネスインパクトに直結します。
AI主導のマーケティングを信頼性・説明責任・コンプライアンスのあるものにするためには、「データがどこから来て、どのように処理され、AIの意思決定にどう影響を与えたのか」を追跡・説明できる体制が不可欠。重要となるのが、透明性のあるAI(Explainable AI:XAI)と、データ・リネージ・ガードレールです。
全てのAI駆動型アクションが、明確で説明可能なデータフローによって裏付けられていることを保証します。
ここまで、AIに最適化されたデータ活用のための5つのステップをご紹介してきました。
では、今、あなたの組織のデータ基盤はどこまで準備が整っているでしょうか?
最近のレポートによると、64%の組織が少なくとも1PB(ペタバイト)のデータを管理しており、41%の組織は500PB以上を処理しています!
データ量が前例のない速さで増加しているため、データ基盤のアップグレードに失敗した企業は、AIシステムに対応できず、非効率性、セキュリティリスク、および信頼性の低いAIパフォーマンスにつながるでしょう。
今こそ、企業がAIデータ対応への投資を後回しにするのではなく、戦略的な優先事項として扱うべき時です。
まずは、次のステップから取り組みを始めてみてはいかがでしょうか?
この変革を加速させる有力な手段が、HCL Unica マーケティングスイートとHCL Composable CDPの導入です。両者を連携させることで、エンドツーエンドのデータ管理とAIドリブンなマーケティングの実現が可能になります。
HCL CDPによって強固なデータガバナンスとコンプライアンスを確保しながら、HCL Unicaのマーケティング自動化ソフトウェアを組み合わせることで、AI主導のマーケティング施策を安全かつ大規模に展開可能です。
データをAIの未来へと活用する準備はできていますか?
今こそ、AI活用を円滑に進めるために行動を始めましょう!
https://cdn.avepoint.com/pdfs/en/ebooks/AI-IM-Whitepaper-v4.pdf
https://www.cmswire.com/digital-experience/the-role-of-data-privacy-in-customer-trust-and-brand-loyalty/
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai